Water Balance and 'Salt Wasting' in the First Year of Life: The Role of Aldosterone-Signaling Defects.
نویسندگان
چکیده
In newborns and infants, dehydration and salt wasting represent a relatively common cause of admission to hospital and may result in life-threatening complications. Kidneys are responsible for electrolyte homoeostasis, but neonatal kidneys show low glomerular filtration rate and immaturity of the distal nephron, leading to reduced ability to concentrate urine. High extrarenal fluid losses often contribute to the increased occurrence of electrolyte disorders. Aldosterone is essential for sodium retention in the kidney, salivary glands, sweat glands and colon. A partial and transient aldosterone resistance is present in newborns and infants, thus reducing the capability of maintaining sodium balance in specific pathological conditions. The present review examines the mechanisms making infants more susceptible to salt wasting. Peculiar aspects of renal physiology in the first year of life and management of electrolyte disorders (i.e. sodium and potassium) are considered. Finally, inherited disorders associated with neonatal salt wasting are examined in detail. © 2016 S. Karger AG, Basel.
منابع مشابه
Water Balance and ‘Salt Wasting’ in the First Year of Life: The Role of Aldosterone-Signaling Defects
In newborns and infants, dehydration and salt wasting represent a relatively common cause of admission to hospital and may result in life-threatening complications. Kidneys are responsible for electrolyte homoeostasis, but neonatal kidneys show low glomerular filtration rate and immaturity of the distal nephron, leading to reduced ability to concentrate urine. High extrarenal fluid losses often...
متن کاملWater Balance and ‘Salt Wasting’ in the First Year of Life: The Role of Aldosterone-Signaling Defects
In newborns and infants, dehydration and salt wasting represent a relatively common cause of admission to hospital and may result in life-threatening complications. Kidneys are responsible for electrolyte homoeostasis, but neonatal kidneys show low glomerular filtration rate and immaturity of the distal nephron, leading to reduced ability to concentrate urine. High extrarenal fluid losses often...
متن کاملAbnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct.
Although the aldosterone-responsive segments of the nephron together reabsorb <10% of the filtered Na+, certain single-gene defects that affect the epithelial Na+ channel (ENaC) in the luminal membrane of the collecting duct (CD) or its regulation by aldosterone cause severe hypertension, whereas others cause salt wasting and hypotension. These rare defects illustrate the key role of the distal...
متن کاملThe clinical significance of aldosterone synthase deficiency: report of a novel mutation in the CYP11B2 gene
BACKGROUND Aldosterone synthase (CYP11B2) deficiency is a rare autosomal recessive disorder, usually presenting with severe salt-wasting in infancy or stress-induced hyperkalaemia and postural hypotension in adulthood. Neonatal screening for congenital adrenal hyperplasia, another cause of salt wasting, using 17-hydroxyprogesterone measurement would fail to detect aldosterone synthase deficienc...
متن کاملCongenital primary adrenal insufficiency and selective aldosterone defects presenting as salt-wasting in infancy: a single center 10-year experience
BACKGROUND Salt-wasting represents a relatively common cause of emergency admission in infants and may result in life-threatening complications. Neonatal kidneys show low glomerular filtration rate and immaturity of the distal nephron leading to reduced ability to concentrate urine. METHODS A retrospective chart review was conducted for infants hospitalized in a single Institution from 1(st) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hormone research in paediatrics
دوره 86 3 شماره
صفحات -
تاریخ انتشار 2016